Линейные уравнения

Линейные  уравнения  –  уравнения,  которые  можно  представить  в  виде  \(ax+b=0\),  где \(a\) и \(b\) – какие-либо числа.

Проще говоря, это такие уравнения, в которых переменные (обычно иксы) в первой степени. При этом не должно быть переменных в знаменателях дробей.

Например:

         

\(2x+7=0\)

         

Здесь \(a=2, b=7\)

\(5=0\)

 

А тут \(a=0, b=5\) (пояснение: данное уравнение может быть представлено в виде \(0\cdot x+5=0\))

 

\(-7(5-3y)=91\)

 

Здесь \(a\) и \(b\) изначально не определены, но преобразовав уравнение, мы сможем их найти.

 

\(\frac{x+2}{3}\)\(+x=1-\)\(\frac{3}{4}\)\(x\)

 

Тоже самое, \(a\) и \(b\) пока что неизвестны.




Решение линейных уравнений

При решении линейных уравнений, мы стремимся найти корень, то есть такое значение для переменной, которое превратит уравнение в правильное равенство.

В простых уравнениях корень очевиден сразу или легко находиться подбором. Например, понятно, что корнем уравнения \(x+3=5\) будет число \(2\), ведь именно двойка при подстановке ее вместо икса даст \(5=5\) – верное равенство.

Однако в более сложных случаях ответ сразу не виден. И тогда на помощь приходят равносильные преобразования.

Чтобы найти корень уравнения нужно равносильными преобразования привести данное нам уравнение к виду

\(x=[число]\)

Это число и будет корнем.

То есть, мы преобразовываем уравнение, делая его с каждым шагом все проще, до тех пор, пока не сведем к совсем примитивному уравнению «икс = число», где корень – очевиден. Наиболее часто применяемыми при решении линейных уравнений являются следующие преобразования:

1. Прибавление или вычитание из обеих частей уравнения одинакового числа или выражения.

Например: прибавим \(5\) к обеим частям уравнения \(6x-5=1\)

                  \(6x-5=1\)         \(|+5\)
\(6x-5+5=1+5\)
\(6x=6\)

Обратите внимание, что тот же результат мы могли бы получить быстрее – просто записав пятерку с другой стороны уравнения и поменяв при этом ее знак. Собственно, именно так и делается школьный «перенос через равно со сменой знака на противоположный».

2. Умножение или деление обеих частей уравнения на одинаковое число или выражение.

Например: разделим уравнение \(-2x=8\) на минус два

                  \(-2x=8\)         \(|:(-2)\)
\(x=-4\)

Обычно данный шаг выполняется в самом конце, когда уравнение уже приведено к виду \(ax=b\), и мы делим на \(a\), чтобы убрать его слева.

3. Использование свойств и законов математики: раскрытие скобок, приведение подобных слагаемых, сокращение дробей и т.д.

Например: раскроем скобки в уравнении \(2(3+x)=4(3x-2)-5\)

                  \(6+2x=12x-8-5\)

Чаще всего при решении линейного уравнения приходиться делать несколько разных преобразований.

Пример. Решить линейное уравнение \(6(4-x)+x=3-2x\)

Решение:

\(6(4-x)+x=3-2x\)

                              

Раскрываем скобки

\(24-6x+x=3-2x\)

 

Приводим подобные слагаемые

\(24-5x=3-2x\)

 

Прибавляем \(2x\) слева и справа

\(24-5x+2x=3\)

     

Вычитаем \(24\) из обеих частей уравнения

\(-5x+2x=3-24\)

     

Опять приводим подобные слагаемые

\(-3x=-21\)

     

Теперь делим уравнение на \(-3\), тем самым убирая коэффициент перед иксом в левой части.

\(x=7\)

         


Ответ: \(7\)

Ответ найден. Однако давайте его проверим. Если семерка действительно корень, то при подстановке ее вместо икса в первоначальное уравнение должно получиться верное равенство - одинаковые числа слева и справа. Пробуем.

                   Проверка:
         \(6(4-7)+7=3-2\cdot7\)
           \(6\cdot(-3)+7=3-14\)
                \(-18+7=-11\)
                  \(-11=-11\)

Сошлось. Значит, семерка и в самом деле является корнем исходного линейного уравнения.

Не ленитесь проверять подстановкой найденные вами ответы, особенно если вы решаете уравнение на контрольной или экзамене.

Остается вопрос – а как определить, что делать с уравнением на очередном шаге? Как именно его преобразовывать? Делить на что-то? Или вычитать? И что конкретно вычитать? На что делить?

Ответ прост:

Ваша цель – привести уравнение к виду \(x=[число]\), то есть, слева икс без коэффициентов и чисел, а справа – только число без переменных. Поэтому смотрите, что вам мешает и делайте действие, обратное тому, что делает мешающий компонент.

Чтобы лучше это понять, разберем по шагам решение линейного уравнения \(x+3=13-4x\).

Давайте подумаем: чем данное уравнение отличается от \(x=[число]\)? Что нам мешает? Что не так?

Ну, во-первых, мешает тройка, так как слева должен быть только одинокий икс, без чисел. А что «делает» тройка? Прибавляется к иксу. Значит, чтобы ее убрать - вычтем такую же тройку. Но если мы вычитаем тройку слева, то должны вычесть ее и справа, чтобы равенство не было нарушено.

                  \(x+3=13-4x\)         \(|-3\)
\(x+3-3=13-4x-3\)
\(x=10-4x\)

Хорошо. Теперь что мешает? \(4x\) справа, ведь там должны быть только числа. \(4x\) вычитается - убираем прибавлением.

                  \(x=10-4x\)         \(|+4x\)
\(x+4x=10-4x+4x\)

Теперь приводим подобные слагаемые слева и справа.

\(5x=10\)

Уже почти готово. Осталось убрать пятерку слева. Что она «делает»? Умножается на икс. Поэтому убираем ее делением.

                  \(5x=10\)         \(|:5\)
\(\frac{5x}{5}\)\(=\)\(\frac{10}{5}\)
\(x=2\)

Решение завершено, корень уравнения – двойка. Можете проверить подстановкой.

Заметим, что чаще всего корень в линейных уравнениях только один. Однако могут встретиться два особых случая.




Особый случай 1 – в линейном уравнении нет корней.

Пример. Решить уравнение \(3x-1=2(x+3)+x\)

Решение:

\(3x-1=2(x+3)+x\)

 

Раскроем скобки

\(3x-1=2x+6+x\)

 

Приведем подобные слагаемые

\(3x-1=3x+6\)

 

Перенесем члены с переменной влево, а просто числа - вправо, меняя при этом знаки

\(3x-3x=6+1\)

     

Опять приведем подобные слагаемые

\(0=7\)

     

Ну и при каком иксе ноль станет равен \(7\)? Ни при каком, тут икс вообще никак не влияет и не может «исправить» неверность получившегося равенства. Поэтому ответ – в этом линейном уравнении нет корней.

Ответ: нет корней.

На самом деле, то, что мы придем к такому результату было видно раньше, еще когда мы получили \(3x-1=3x+6\). Вдумайтесь: как могут быть равны \(3x\) из которых вычли \(1\), и \(3x\) к которым прибавили \(6\)? Очевидно, что никак, ведь с одним и тем же выражением сделали разные действия! Понятно, что результаты будут отличаться.




Особый случай 2 – в линейном уравнении бесконечное количество корней.

Пример. Решить линейное уравнение \(8(x+2)-4=12x-4(x-3)\)

Решение:

\(8(x+2)-4=12x-4(x-3)\)

 

Начинаем преобразовывать – раскрываем скобки

\(8x+16-4=12x-4x+12\)

 

Приводим подобные слагаемые

\(8x+12=8x+12\)

 

Переносом через равно собираем иксы справа, а числа слева

\(8x-8x=12-12\)

     

И вновь приводим подобные

\(0=0\)

     

Очевидно, что тут “подойдет” любое значение для икса, ведь он никак не влияет на полученное уравнение. И значит равенство всегда будет верным.

Ответ: любое число.

Это, кстати, было заметно еще раньше, на этапе: \(8x+12=8x+12\). Действительно, слева и справа – одинаковые выражения. Какой икс ни подставь – будет одно и то же число и там, и там.




Более сложные линейные уравнения.

Исходное уравнение не всегда сразу выглядит как линейное, иногда оно «маскируется» под другие, более сложные уравнения. Однако в процессе преобразований маскировка спадает.

Пример. Найдите корень уравнения \(2x^{2}-(x-4)^{2}=(3+x)^{2}-15\)

Решение:

\(2x^{2}-(x-4)^{2}=(3+x)^{2}-15\)

 

Казалось бы, здесь есть икс в квадрате – это не линейное уравнение! Но не спешите. Давайте применим формулы сокращенного умножения

\(2x^{2}-(x^{2}-8x+16)=9+6x+x^{2}-15\)

 

Почему результат раскрытия \((x-4)^{2}\) стоит в скобке, а результат \((3+x)^{2}\) нет? Потому что перед первым квадратом стоит минус, который изменит все знаки. И чтобы не забыть об этом – берем результат в скобки, которую теперь раскрываем.

\(2x^{2}-x^{2}+8x-16=9+6x+x^{2}-15\)

 

Приводим подобные слагаемые

\(x^{2}+8x-16=x^{2}+6x-6\)

     

Далее как обычно: «иксы – влево, числа – вправо», не забывая менять знаки.

\(x^{2}-x^{2}+8x-6x=-6+16\)

     

Опять приводим подобные.

\(2x=10\)

     

Вот так. Оказывается, исходное уравнение – вполне себе линейное, а иксы в квадрате не более чем ширма, чтоб нас запутать. :) Дорешиваем, деля уравнение на \(2\), и получаем ответ.

Ответ: \(x=5\)


Пример. Решить линейное уравнение \(\frac{x+2}{2}\) \(-\) \(\frac{1}{3}\) \(=\) \(\frac{9+7x}{6}\)

Решение:

\(\frac{x+2}{2}\) \(-\) \(\frac{1}{3}\) \(=\) \(\frac{9+7x}{6}\)

                              

Уравнение не похоже на линейное, дроби какие-то... Однако давайте избавимся от знаменателей, умножив обе части уравнения на общий знаменатель всех дробей – шестерку

\(6\cdot\)\((\frac{x+2}{2}\) \(-\) \(\frac{1}{3})\) \(=\) \(\frac{9+7x}{6}\)\(\cdot 6\)

 

Раскрываем скобку слева

\(6\cdot\)\(\frac{x+2}{2}\) \(-\) \(6\cdot\)\(\frac{1}{3}\) \(=\) \(\frac{9+7x}{6}\)\(\cdot 6\)

 

Теперь сокращаем знаменатели

\(3(x+2)-2=9+7x\)

     

Вот теперь похоже на обычное линейное! Дорешиваем его. Раскрываем скобки

\(3x+6-2=9+7x\)

     

Переносом через равно собираем иксы справа, а числа слева

\(3x-7x=9-6+2\)

     

Приводим подобные слагаемые

\(-4x=5\)

     

Ну и поделив на \(-4\) правую и левую часть, получаем ответ

Ответ: \(x=-1,25\)




Смотрите также:
Линейная функция

Скачать статью


Хочу задать вопрос

*
Анастасия
Здравствуйте. А почему в линейных уравнения переменная не может быть в знаменателе?
Спасибо
Администратор сайта
Добрый день, Анастасия.
Потому что это будет уже уравнение другого типа - дробно-рациональное http://cos-cos.ru/math/151/
В решении таких уравнений есть свои нюансы. Поэтому чтоб не путаться математики отделяют один тип уравнений от другого.
Сергей
В последнем примере, действие "Теперь сокращаем знаменатели" является не очевидным, знаменатели у дробей стоят разные (2, 3 и 6), что произошло на этом шаге не очевидно, нужно полагать, в этом примере может быть добавлен какой-то промежуточный поясняющий шаг, а так все остальное понятно, спасибо за сайт!