Формулы сокращенного умножения с примерами

Формулы сокращенного умножения с примерами 7 класс

Формулами сокращенного умножения (ФСУ) называют несколько наиболее часто встречающихся в практике случаев умножения многочленов.

ФСУ используются при упрощении алгебраических выражений (в том числе в работе с алгебраическими дробями), решении уравнений и неравенств, при разложении на множители и т.д. Ниже мы рассмотрим наиболее популярные формулы и разберем как они получаются.




Квадрат суммы

Пусть у нас возводиться в квадрат сумма двух одночленов, вот так: \((a+b)^2\). Возведение в квадрат – это умножение числа или выражения само на себя, то есть, \((a+b)^2=(a+b)(a+b)\). Теперь мы можем просто раскрыть скобки, перемножив их как делали это здесь, и привести подобные слагаемые. Получаем:

(a+b)^2=

А если мы опустим промежуточные вычисления и запишем только начальное и конечное выражения, получим окончательную формулу:

Квадрат суммы: \((a+b)^2=a^2+2ab+b^2\)

Большинство учеников учат ее наизусть. А вы теперь знаете, как эту формулу вывести, и если вдруг забудете – всегда можете это сделать.
Хорошо, но как ей пользоваться и зачем эта формула нужна? Квадрат суммы позволяет быстро писать результат возведения суммы двух слагаемых в квадрат. Давайте посмотрим на примере.

Пример. Раскрыть скобки: \((x+5)^2\)
Решение:

раскрытие скобок по формуле и без формулы

Обратите внимание, насколько быстрее и меньшими усилиями получен результат во втором случае. А когда вы эту и другие формулы освоите до автоматизма – будет еще быстрее: вы сможете просто сразу же писать ответ. Поэтому они и называются формулы СОКРАЩЕННОГО умножения. Так что, знать их и научиться применять – точно стоит.

На всякий случай отметим, что в качестве \(a\) и \(b\) могут быть любые выражения – принцип остается тем же. Например:

несколько примеров на квадрат суммы

Если вы вдруг не поняли какие-то преобразования в двух последних примерах – повторите свойства степеней и тему приведения одночлена к стандартному виду.



Пример. Преобразуйте выражение \((1+5x)^2-12x-1 \) в многочлен стандартного вида.

Решение:

\((1+5x)^2-12x-1= \)

               

Раскроем скобки, воспользовавшись формулой квадрата суммы...

\(=1+10x+25x^2-12x-1=\)

 

…и приведем подобные слагаемые.

\(=25x^2-2x\)

 

Готово.

Ответ: \(25x^2-2x\).



Важно! Необходимо научиться пользоваться формулами не только в «прямом», но и в «обратном» направлении.

Пример. Вычислите значение выражения \((368)^2+2·368·132+(132)^2\) без калькулятора.

Решение:

\((368)^2+2·368·132+(132)^2=\)

               

Мда… возводить в квадрат трехзначные числа, перемножить их же, а потом все это складывать – удовольствие ниже среднего. Давайте искать другой путь: обратите внимание, что данное нам числовое выражение очень похоже на правую часть формулы. Применим ее в обратную сторону: \(a^2+2ab+b^2=(a+b)^2\)

\(=(368+132)^2=\)

 

Вот теперь вычислять гораздо приятнее!

\(=(500)^2=250 000.\)

 

Готово.

Ответ: \(250 000\).




Квадрат разности

Выше мы нашли формулу для суммы одночленов. Давайте теперь найдем формулу для разности, то есть, для \((a-b)^2\):

вывод формулы квадрата разности

В более краткой записи имеем:

Квадрат разности: \((a-b)^2=a^2-2ab+b^2\)

Применяется она также, как и предыдущая.

Пример. Упростите выражение \((2a-3)^2-4(a^2-a)\) и найдите его значение при \(a=\frac{17}{8}\).

Решение:

\((2a-3)^2-4(a^2-a)=\)

               

Если сразу подставить дробь в выражение – придется возводить ее в квадрат и вообще делать объемные вычисления. Попробуем сначала упростить выражение, воспользовавшись формулой выше и раскрыв скобки.

\(=4a^2-12a+9-4a^2+4a=\)

 

Теперь приведем подобные слагаемые.

\(=-8a+9=\)

 

Вот теперь подставляем и наслаждаемся простотой вычислений.

\(=-8·\frac{17}{8}+9=-17+9=8\)

 

Пишем ответ.

Ответ: \(8\).




Разность квадратов

Итак, мы разобрались с ситуациями произведения двух скобок с плюсом в них и двух скобок с минусом. Остался случай произведения одинаковых скобок с разными знаками. Смотрим, что получится:

вывод формулы разности квадратов

Получили формулу:

Разность квадратов \(a^2-b^2=(a+b)(a-b)\)

Эта формула одна из наиболее часто применяемых при разложении на множители и работе с алгебраическими дробями

Пример. Сократите дробь \(\frac{x^2-9}{x-3}\).

Решение:

\(\frac{x^2-9}{x-3}\)\(=\)

               

Да, я знаю, что рука так и тянется сократить иксы и девятку с тройкой – однако так делать ни в коем случае нельзя, ведь и в числителе, и в знаменателе стоит минус!
Попробуем воспользоваться формулой.

\(=\) \(\frac{x^2-3^2}{x-3}\)\(=\)\(\frac{(x+3)(x-3)}{x-3}\)\(=\)

 

Вот теперь все плюсы и минусы попрятались в скобки, и значит без проблем можем сокращать одинаковые скобки.

\(=x+3\)

 

Готов ответ.

Ответ: \(x+3\).



Пример.Разложите на множители \(25x^4-m^{10} t^6\).
Решение:

\(25x^4-m^{10} t^6\)

               

Воспользуемся формулами степеней: \((a^n )^m=a^{nm}\) и \(a^n b^n=(ab)^n\).

\(=(5x^2 )^2-(m^5 t^3 )^2=\)

 

Ну, а теперь пользуемся формулой \(a^2-b^2=(a+b)(a-b)\), где \(a=5x^2\) и \(b=m^5 t^3\).

\(=(5x^2-m^5 t^3 )(5x^2+m^5 t^3 )\)

 

Готов ответ.

Это три основные формулы, знать которые нужно обязательно! Есть еще формулы с кубами (см. выше), их тоже желательно помнить либо уметь быстро вывести. Отметим также, что в практике часто встречаются сразу несколько таких формул в одной задаче – это нормально. Просто приучайтесь замечать формулы и аккуратно применяйте их, и все будет хорошо.



Пример (повышенной сложности!).Сократите дробь \(\frac{x^2-4xy-9+4y^2}{x-2y+3}\) .
Решение:

\(\frac{x^2-4xy-9+4y^2}{x-2y+3}\)\(=\)

               

На первый взгляд тут тихий ужас и сделать с ним ничего нельзя (вариант «лечь и помереть» всерьез не рассматриваем).
Однако давайте попробуем поменять два последних слагаемых числителя местами и добавим скобки (просто для наглядности).

\(\frac{(x^2-4xy+4y^2)-9}{x-2y+3}\)\(=\)

 

Теперь немного преобразуем слагаемые в скобке:
\(4xy\) запишем как \(2·x·2y\),
а \(4y^2\) как \((2y)^2\).

\(\frac{(x^2-4xy+(2y)^2)-9}{x-2y+3}\)\(=\)

 

Теперь приглядимся – и заметим, что в скобке у нас получилась формула квадрата разности, у которой \(a=x\), \(b=2y\). Сворачиваем по ней к виду скобки в квадрате. И одновременно представляем девятку как \(3\) в квадрате.

\(\frac{(x-2y)^2-3^2}{x-2y+3}\)\(=\)

 

Еще раз внимательно смотрим на числитель… думаем… думаем… и замечаем формулу разности квадратов, у которой \(a=(x-2y)\), \(b=3\). Раскладываем по ней к произведению двух скобок.

\(\frac{(x-2y-3)(x-2y+3)}{x-2y+3}\)\(=\)

 

И вот теперь сокращаем вторую скобку числителя и весь знаменатель.

\(x-2y-3\)

 

Готов ответ.

Скачать статью


Хочу задать вопрос

*