Метод интервалов. Как решать неравенства с помощью метода интервалов

Метод интервалов применяется при решении огромного количества самых разных неравенств – квадратных,  дробно-рациональных, показательных, логарифмических

Примеры неравенств, которые удобно решать методом интервалов:

\((2x-5)(x+3)≤0\)

\(\frac{-14}{x^2+2x-15}\)\(≤0\)

\(x^2<361\)

\(\frac{x^2-6x+8}{x-1}\)\(-\)\(\frac{x-4}{x^2-3x+2}\)\(≤0\)

\(\frac{x-2}{3-x}\)\(≤0\)

\(\frac{2}{5^x-1}\)\(+\)\(\frac{5^x-2}{5^x-3}\)\(≥2\)

\(x^2 (-x^2-64)≤64(-x^2-64)\)

\(\frac{5\log^2_{2}⁡x-100}{\log^2_{2}⁡x-25}\)\(≥4\)




Как решать неравенства методом интервалов (алгоритм с примерами)

  1. Равносильными преобразованиями приведите неравенство к виду: \(\frac{(x-x_1 )^n (x-x_2 )^k…}{(x-x_3 )^l (x-x_4 )^m…}\)\(∨0\) или \((x-x_1 )^n (x-x_2 )^k…∨0\) (\(∨\) - любой знак сравнения; \(n,k,l,m\) – любые натуральные числа большие нуля, в том числе и \(1\))

    Пример:

    \((2x+5)(x-2)>5\)
    \(2x^2-4x+5x-10-5>0\)
    \(2x^2+x-15>0\)
    \(D=1-4 \cdot 2 \cdot (-15)=121=11^2\)
    \(x_1=\frac{-1-11}{2 \cdot 2}=-3;\)      \(x_2=\frac{-1+11}{2 \cdot 2}=\frac{5}{2}\)
    \(2(x-\frac{5}{2})(x+3)>0\)          \(|:2\)
    \((x-\frac{5}{2})(x+3)>0\)                

    Отметим, что здесь применено разложение на множители квадратного трехчлена.


  2. Найдите корни числителя и знаменателя (т.е. такие значения икса, которые превратят их в ноль).

    \(x=\frac{5}{2}; x=-3\)


  3. Нанесите найденные значения на числовую ось.

    Если неравенство строгое, то корни числителя обозначьте «выколотой» точкой, если нет - закрашенной. Корни знаменателя «выколоты» всегда, независимо от строгости знака сравнения

    метод интервалов (3).png

  4. Расставьте знаки на интервалах числовой оси. Напомню правила расстановки знаков:

    - В крайнем правом интервале ставим знак плюс;

    - Дальше двигаемся влево;

    - Переходя через число:



    - меняем знак, если скобка с этим числом была в нечетной степени (1, 3, 5…)

     

    - не меняем знак, если скобка с этим числом была в четной степени (2, 4, 6…)

     

    метод интервалов (2).png
    метод интервалов(3).png

  5. Выделите нужные промежутки.
    Если есть отдельно стоящий корень, то отметьте его флажком, чтоб не забыть внести этот корень в ответ (такая ситуация рассмотрена в одном из примеров ниже).

    метод интервалов (4).png

  6. Запишите в ответ выделенные промежутки и корни, отмеченные флажком (если они есть).

    Ответ: \((-∞;-3)∪(\frac{5}{2};∞)\)




Почему алгоритм метода интервалов работает именно так?

+5 видео-примеров решения


Пример. (задание из ОГЭ)  Решите неравенство методом интервалов   \((x-7)^2< \sqrt{11}(x-7)\)

Решение:

\((x-7)^2< \sqrt{11}(x-7)\)

Чтобы в неравенстве справа был \(0\), перенесем выражение из правой части в левую.

\((x-7)^2- \sqrt{11}(x-7)<0\)

Вынесем за скобку \((x-7)\).

\((x-7)(x-7-\sqrt{11})<0\)

Находим корни.

\(x=7;\)        \(x=7+\sqrt11\)

Расставляем на числовой оси корни, затем знаки и закрашиваем нужные интервалы

метод интервалов.png

Записываем ответ

Ответ: \((7;7+\sqrt{11})\)



Пример. Решите неравенство методом интервалов    \(\frac{(4-x)^3 (x+6)(6-x)^4}{(x+7,5)}\)\(≥0\)
Решение:

\(\frac{(4-x)^3 (x+6)(6-x)^4}{(x+7,5)}\)\(≥0\)

Здесь на первый взгляд все кажется нормальным, а неравенство изначально приведенным к нужному виду. Но это не так – ведь в первой и третьей скобке числителя икс стоит со знаком минус.

Преобразовываем скобки, с учетом того, что четвертая степень - четная (т.е. уберет знак минус), а третья – нечетная (т.е. не уберет).
\((4-x)^3=(-x+4)^3=(-(x-4))^3=-(x-4)^3\)
\((6-x)^4=(-x+6)^4=(-(x-6))^4=(x-6)^4\)
Вот так. Теперь возвращаем скобки «на место» уже преобразованными.

\(\frac{-(x-4)^3 (x+6)(x-6)^4}{(x+7,5)}\)\(≥0\)

Теперь все скобки выглядят как надо (первым идет иск без знака и только потом число). Но перед числителем появился минус. Убираем его, умножая неравенство на \(-1\), не забыв при этом перевернуть знак сравнения

\(\frac{(x-4)^3 (x+6)(x-6)^4}{(x+7,5)}\)\(≤0\)

Готово. Вот теперь неравенство выглядит как надо. Можно применять метод интервалов.

\(x=4;\) \(x=-6;\) \(x=6;\) \(x=-7,5\)

Расставим точки на оси, знаки и закрасим нужные промежутки.

метод интервалов(6).png

В промежутке от \(4\) до \(6\), знак не надо менять, потому что скобка \((x-6)\) в четной степени (см. пункт 4 алгоритма). Флажок будет напоминанием о том, что шестерка - тоже решение неравенства.
Запишем ответ.

Ответ: \((-∞;7,5]∪[-6;4]∪\left\{6\right\}\)



Пример. (Задание из ОГЭ) Решите неравенство методом интервалов    \(x^2 (-x^2-64)≤64(-x^2-64)\)
Решение:

\(x^2 (-x^2-64)≤64(-x^2-64)\)

Слева и справа есть одинаковые выражения – это явно не случайно. Первое желание – поделить на \(-x^2-64\), но это ошибка, т.к. есть шанс потерять корень. Вместо этого перенесем \(64(-x^2-64)\) в левую сторону

\(x^2 (-x^2-64)-64(-x^2-64)≤0\)

Вынесем за скобку общий множитель.

\((-x^2-64)(x^2-64)≤0\)

Вынесем минус в первой скобки и разложим на множители вторую

\(-(x^2+64)(x-8)(x+8)≤0\)

Обратите внимание: \(x^2\) либо равно нулю, либо больше нуля. Значит, \(x^2+64\) – однозначно положительно при любом значении икса, то есть это выражение никак не влияет на знак левой части. Поэтому можно смело делить обе части неравенства на это выражение.
Поделим неравенство так же на \(-1\) , чтобы избавиться от минуса.

\((x-8)(x+8)≥0\)

Теперь можно применять метод интервалов

\(x=8;\)   \(x=-8\)

Запишем ответ

Ответ: \((-∞;-8]∪[8;∞)\)


Смотрите также:
Квадратные неравенства
Дробно-рациональные неравенства



Хочу задать вопрос

*
Валерий
Ничего лишнего. Всё понятно. Лишь бы наша молодёжь знала таблицу умножения и устный счет. Преподавателям среднего и старшего звена народного образования приходится отвлекаться на упомянутые темы.