Квадратичная функция. Как построить параболу?

Квадратичная функция – это функция вида \(y=ax^2+bx+c\). График квадратичной функции – парабола.

Примеры:

\(y= x^2+6x+5\)

x^2+6x+5.jpg

\(y=x^2-4x+5\)

x^2-4x+5.jpg

\(y=-2x^2-4x+4\)

 -2x^2-4x+4.jpg

\(y=-3x^2+21x-34\)

-x^2-3x+34.jpg


«Анатомия» квадратичной функции:

анатомия параболы.png


\(x_в\) и \(y_в\) – координаты вершины параболы. \(x_в\) можно найти с помощью формулы: \(x_в=\frac{-b}{2a}\). \(y_в\) можно найти подставив в формулу квадратичной функции вместо \(x\) значение \(x_в: y_в=ax_в^2+bx_в+с\)
Ось симметрии проходит через вершину параболы и параллельна оси \(y\) (ординат). \(x_1\) и \(x_2\) – нули функции. Их можно найти, приравняв формулу функции к нулю и решив соответствующее квадратное уравнение.



3 параметра позволяющих сопоставить формулу квадратичной функции и график:

1.

\(a>0\) - ветви параболы направлены вверх

парабола4.png

\(a<0\) - ветви параболы направлены вниз

парабола5.png

2.

\(c\) равна ординате точки пересечения
графика с осью \(y\)

парабола6.png

3.

координата вершины параболы \(x_в=-\frac{b}{2a}\)

парабола7.png



Пример (задание из ОГЭ). На рисунке изображён график квадратичной функции \(y=ax^2+bx+c\)

парабола14.jpg

Какие знаки параметров \(a\) и \(c\)?

Решение:

Ветви параболы направлены вниз, значит \(a<0\)
График функции пересекает ось \(y\) в точке лежащий ниже оси \(x\), значит \(c<0\)

Ответ: \(a<0\),\(c<0\)



Пример (задание из ОГЭ). Установите соответствие между квадратичными функциями и их графиками:

огэ 10 задача

Решение:
Во втором графике ветви параболы направлены вниз, значит \(a<0\). Под этот график подходит только функция под буквой В.
Во втором и третьем графике \(a>0,c=1\) – по этим параметрам нам определить их функции. Тогда найдем \(x_в\) функций под буквой А и Б:

А. \(y=x^2-5x+1\)      \(x_в=\frac{5}{2}=2,5\) так же как на графике 1
Б. \(y=x^2+5x+1\)      \(x_в= \frac{-5}{2}=-2,5\) так же как на графике 3

Ответ:  

А

Б

В

1

3

2




Как построить график квадратичной функции (параболу)?

Квадратичную функцию можно строить, как и все остальные, выбирая точки наугад (подробнее можно прочитать здесь). Но есть способ позволяющий строить параболу быстрее, выбирая точки осмысленно.

  1. Найдите координаты вершины параболы. Поставьте точку вершины на координатной плоскости и проведите через неё ось симметрии параболы.

  2. Найдите точку пересечения графика с осью \(y\): \(x=0;y=c\). Постройте точку симметричную точке \((0;c)\) относительно оси параболы.

  3. Найдите координату целой точки, лежащей вблизи оси параболы.  Отметьте  симметричную ей точку на плоскости.

  4. Соедините точки плавной линией.


\(a=2\), \(b=8\), \(c=2\)

1. \(x_в=\frac{-b}{2a}=\frac{-8}{2 \cdot 2}=-2\)
\(y_в=2 \cdot (-2)^2+8 \cdot (-2)+2=2 \cdot 4-16+2=-6\)

парабола10.png  

2. \(x=0, y=2\)

 парабола11.png

3. При \(x=-3\),
\(y=2 \cdot (-3)^2+8 \cdot (-3)+2=2 \cdot 9-24+2=20-24=-4\)

 парабола12.png  

Готово!

 парабола13.png  


Связь квадратичной функции и квадратных уравнений:

Давайте сравним общий вид квадратичной функции и общий вид квадратного уравнения:

\(y=ax^2+bx+c\)

\(ax^2+bx+c=0\)

И там, и там есть квадратный трехчлен \(ax^2+bx+c\). Разница в том, что в функции мы исследуем все возможные значения трехчлена, а в уравнении мы ищем \(x\), при которых значение трехчлена будет равно нулю или при каких \(x\), \(y=0\). Поэтому по графику функции \(y=ax^2+bx+c\) легко определить корни уравнения \(ax^2+bx+c=0\).

Пример:

\(y=x^2+6x+5\)

\(y=x^2-4x+5\)

x^2+6x+5.jpg

x^2-4x+5.jpg


Судя по графику, корнями уравне-
ния \(x^2+6x+5=0\) будут \(x_1=-5\) и \(x_2=-1\)

У уравнения \(x^2-4x+5=0\) нет корней, т.к. нету \(x\) при которых y будет равен нулю (функция не пересекает ось \(x\))



Смотрите также:
Линейная функция
Виды графиков функций
Квадратные неравенства



Хочу задать вопрос

*