Логарифм. Как вычислить логарифм?
Логарифмом положительного числа \(c\) по основанию \(a\) \((a>0, a\neq1)\) называется показатель степени \(b\), в которую надо возвести основание \(a\), чтобы получить число \(c\) \((c>0)\), т.е.
\(a^{b}=c\) \(\Leftrightarrow\) \(\log_{a}{c}=b\)
Объясним проще. Например, \(\log_{2}{8}\) равен степени, в которую надо возвести \(2\), чтоб получить \(8\). Отсюда понятно, что \(\log_{2}{8}=3\).
Примеры: |
\(\log_{5}{25}=2\) |
т.к. \(5^{2}=25\) |
||
|
\(\log_{3}{81}=4\) |
т.к. \(3^{4}=81\) |
||
|
\(\log_{2}\)\(\frac{1}{32}\)\(=-5\) |
т.к. \(2^{-5}=\)\(\frac{1}{32}\) |
Аргумент и основание логарифма
Любой логарифм имеет следующую «анатомию»:
Аргумент логарифма обычно пишется на его уровне, а основание - подстрочным шрифтом ближе к знаку логарифма. А читается эта запись так: «логарифм двадцати пяти по основанию пять».
Как вычислить логарифм?
Чтобы вычислить логарифм - нужно ответить на вопрос: в какую степень следует возвести основание, чтобы получить аргумент?
Например, вычислите логарифм: а) \(\log_{4}{16}\) б) \(\log_{3}\)\(\frac{1}{3}\) в) \(\log_{\sqrt{5}}{1}\) г) \(\log_{\sqrt{7}}{\sqrt{7}}\) д) \(\log_{3}{\sqrt{3}}\)
а) В какую степень надо возвести \(4\), чтобы получить \(16\)? Очевидно во вторую. Поэтому:
\(\log_{4}{16}=2\)
б) В какую степень надо возвести \(3\), чтобы получить \(\frac{1}{3}\)? В минус первую, так как именно отрицательная степень «переворачивает дробь» (здесь и далее пользуемся свойствами степени).
\(\log_{3}\)\(\frac{1}{3}\)\(=-1\)
в) В какую степень надо возвести \(\sqrt{5}\), чтобы получить \(1\)? А какая степень делает любое число единицей? Ноль, конечно!
\(\log_{\sqrt{5}}{1}=0\)
г) В какую степень надо возвести \(\sqrt{7}\), чтобы получить \(\sqrt{7}\)? В первую – любое число в первой степени равно самому себе.
\(\log_{\sqrt{7}}{\sqrt{7}}=1\)
д) В какую степень надо возвести \(3\), чтобы получить \(\sqrt{3}\)? Из свойств степени мы знаем, что корень – это дробная степень, и значит квадратный корень - это степень \(\frac{1}{2}\).
\(\log_{3}{\sqrt{3}}=\)\(\frac{1}{2}\)
В сложных случаях для вычисления логарифма удобно переводить его в показательное уравнение.
Пример: Вычислить логарифм \(\log_{4\sqrt{2}}{8}\)
Решение:
\(\log_{4\sqrt{2}}{8}=x\) |
Нам надо найти значение логарифма, обозначим его за икс. Теперь воспользуемся определением логарифма: |
|
\((4\sqrt{2})^{x}=8\) |
Что связывает \(4\sqrt{2}\) и \(8\)? Двойка, потому что и то, и другое число можно представить степенью двойки: |
|
\({(2^{2}\cdot2^{\frac{1}{2}})}^{x}=2^{3}\) |
Слева воспользуемся свойствами степени: \(a^{m}\cdot a^{n}=a^{m+n}\) и \((a^{m})^{n}=a^{m\cdot n}\) |
|
\(2^{\frac{5}{2}x}=2^{3}\) |
Основания равны, переходим к равенству показателей |
|
\(\frac{5x}{2}\)\(=3\) |
|
Умножим обе части уравнения на \(\frac{2}{5}\) |
\(x=1,2\) |
|
Получившийся корень и есть значение логарифма |
Ответ: \(\log_{4\sqrt{2}}{8}=1,2\)
Зачем придумали логарифм?
Чтобы это понять, давайте решим уравнение: \(3^{x}=9\). Просто подберите \(x\), чтобы равенство сработало. Конечно, \(x=2\).
А теперь решите уравнение: \(3^{x}=8\).Чему равен икс? Вот в том-то и дело.
Самые догадливые скажут: «икс чуть меньше двух». А как точно записать это число? Для ответа на этот вопрос и придумали логарифм. Благодаря ему, ответ здесь можно записать как \(x=\log_{3}{8}\).
Хочу подчеркнуть, что \(\log_{3}{8}\), как и любой логарифм - это просто число. Да, выглядит непривычно, но зато коротко. Потому что, если бы мы захотели записать его в виде десятичной дроби, то оно выглядело бы вот так: \(1,892789260714.....\)
Пример: Решите уравнение \(4^{5x-4}=10\)
Решение:
\(4^{5x-4}=10\) |
\(4^{5x-4}\) и \(10\) никак к одному основанию не привести. Значит тут не обойтись без логарифма.
Воспользуемся определением логарифма: |
|
\(\log_{4}{10}=5x-4\) |
Зеркально перевернем уравнение, чтобы икс был слева |
|
\(5x-4=\log_{4}{10}\) |
Перед нами линейное уравнение. Перенесем \(4\) вправо.
И не пугайтесь логарифма, относитесь к нему как к обычному числу. |
|
\(5x=\log_{4}{10}+4\) |
Поделим уравнение на 5 |
|
\(x=\)\(\frac{\log_{4}{10}+4}{5}\) |
|
Вот наш корень. Да, выглядит непривычно, но ответ не выбирают. |
Ответ: \(\frac{\log_{4}{10}+4}{5}\)
Десятичный и натуральный логарифмы
Как указано в определении логарифма, его основанием может быть любое положительное число, кроме единицы \((a>0, a\neq1)\). И среди всех возможных оснований есть два встречающихся настолько часто, что для логарифмов с ними придумали особую короткую запись:
Натуральный логарифм: логарифм, у которого основание - число Эйлера \(e\) (равное примерно \(2,7182818…\)), и записывается такой логарифм как \(\ln{a}\).
То есть, \(\ln{a}\) это то же самое, что и \(\log_{e}{a}\), где \(a\) - некоторое число.
Десятичный логарифм: логарифм, у которого основание равно 10, записывается \(\lg{a}\).
То есть, \(\lg{a}\) это то же самое, что и \(\log_{10}{a}\), где \(a\) - некоторое число.
Основное логарифмическое тождество
У логарифмов есть множество свойств. Одно из них носит название «Основное логарифмическое тождество» и выглядит вот так:
\(a^{\log_{a}{c}}=c\) |
Это свойство вытекает напрямую из определения. Посмотрим как именно эта формула появилась.
Вспомним краткую запись определения логарифма:
если \(a^{b}=c\), то \(\log_{a}{c}=b\)
То есть, \(b\) – это тоже самое, что \(\log_{a}{c}\). Тогда мы можем в формуле \(a^{b}=c\) написать \(\log_{a}{c}\) вместо \(b\). Получилось \(a^{\log_{a}{c}}=c\) – основное логарифмическое тождество.
Остальные свойства логарифмов вы можете найти здесь. С их помощью можно упрощать и вычислять значения выражений с логарифмами, которые «в лоб» посчитать сложно.
Пример: Найдите значение выражения \(36^{\log_{6}{5}}\)
Решение:
\(36^{\log_{6}{5}}=\) |
Сразу пользоваться свойством \(a^{\log_{a}{c}}=c\) мы не можем, так как в основании степени и в основании логарифма – разные числа. Однако мы знаем, что \(36=6^{2}\) |
|
\(=(6^{2})^{\log_{6}{5}}=\) |
Зная формулу \((a^{m})^{n}=a^{m\cdot n}\), а так же то, что множители можно менять местами, преобразовываем выражение |
|
\(=6^{2\cdot\log_{6}{5}}=6^{log_{6}{5}\cdot2}=(6^{log_{6}{5}})^{2}=\) |
Вот теперь спокойно пользуемся основным логарифмическим тождеством. |
|
\(=5^{2}=25\) |
Ответ готов. |
Ответ: \(25\)
Как число записать в виде логарифма?
Как уже было сказано выше – любой логарифм это просто число. Верно и обратное: любое число может быть записано как логарифм. Например, мы знаем, что \(\log_{2}{4}\) равен двум. Тогда можно вместо двойки писать \(\log_{2}{4}\).
Но \(\log_{3}{9}\) тоже равен \(2\), значит, также можно записать \(2=\log_{3}{9}\) . Аналогично и с \(\log_{5}{25}\), и с \(\log_{9}{81}\), и т.д. То есть, получается
\(2=\log_{2}{4}=\log_{3}{9}=\log_{4}{16}=\log_{5}{25}=\log_{6}{36}=\log_{7}{49}...\)
Таким образом, если нам нужно, мы можем где угодно (хоть в уравнении, хоть в выражении, хоть в неравенстве) записывать двойку как логарифм с любым основанием – просто в качестве аргумента пишем основание в квадрате.
Точно также и с тройкой – ее можно записать как \(\log_{2}{8}\), или как \(\log_{3}{27}\), или как \(\log_{4}{64}\)… Здесь мы как аргумент пишем основание в кубе:
\(3=\log_{2}{8}=\log_{3}{27}=\log_{4}{64}=\log_{5}{125}=\log_{6}{216}=\log_{7}{343}...\)
И с четверкой:
\(4=\log_{2}{16}=\log_{3}{81}=\log_{4}{256}=\log_{5}{625}=\log_{6}{1296}=\log_{7}{2401}...\)
И с минус единицей:
\(-1=\) \(\log_{2}\)\(\frac{1}{2}\)\(=\) \(\log_{3}\)\(\frac{1}{3}\)\(=\) \(\log_{4}\)\(\frac{1}{4}\)\(=\) \(\log_{5}\)\(\frac{1}{5}\)\(=\) \(\log_{6}\)\(\frac{1}{6}\)\(=\) \(\log_{7}\)\(\frac{1}{7}\)\(...\)
И с одной третьей:
\(\frac{1}{3}\)\(=\log_{2}{\sqrt[3]{2}}=\log_{3}{\sqrt[3]{3}}=\log_{4}{\sqrt[3]{4}}=\log_{5}{\sqrt[3]{5}}=\log_{6}{\sqrt[3]{6}}=\log_{7}{\sqrt[3]{7}}...\)
И так далее.
Любое число \(a\) может быть представлено как логарифм с основанием \(b\): \(a=\log_{b}{b^{a}}\)
Пример: Найдите значение выражения \(\frac{\log_{2}{14}}{1+\log_{2}{7}}\)
Решение:
\(\frac{\log_{2}{14}}{1+\log_{2}{7}}\)\(=\) |
Превращаем единицу в логарифм с основанием \(2\): \(1=\log_{2}{2}\) |
|
\(=\)\(\frac{\log_{2}{14}}{\log_{2}{2}+\log_{2}{7}}\)\(=\) |
Теперь пользуемся свойством логарифмов: |
|
\(=\)\(\frac{\log_{2}{14}}{\log_{2}{(2\cdot7)}}\)\(=\)\(\frac{\log_{2}{14}}{\log_{2}{14}}\)\(=\) |
В числителе и знаменателе одинаковые числа – их можно сократить. |
|
\(=1\) |
Ответ готов. |
Ответ: \(1\)
Смотрите также:
Логарифмические уравнения
Логарифмические неравенства
Хочу задать вопрос
Логарифмируем равенство по основанию e
Получаем ln(1-p)^n = ln(1-c)
Перекидываем n вперед (по свойству логарифмов, посмотрите статью cos-cos.ru/math/99/)
Получаем n*ln(1-p)=ln(1-c)
Делим на ln(1-p)
Получаем n=ln(1-c)/ln(1-p)
Все это работает если 1-с>0 и 1-p>0
Условие не понятно, поэтому помочь, увы, не можем. Попробуйте сделать фото, залить его на какой-нибудь фотохостинг и скинуть ссылку сюда.
Log3(основание) 27 - log2(основание) 16
1
,
892789260714...-как.же, все таки, получили такое представление, не совсем понятно
3^1 = 3 - мало
3^2 = 9 - много
Значит, искомое число между 1 и 2 ближе к двойке. Смотрим дальше:
3^1,8 = 7,22... - мало.
3^1,9 = 8,06... - много.
Смотрим следующую значащую цифру:
3^1,88 = 7,88... - мало.
3^1,89 = 7,97... - мало.
Значит чуть больше чем 1,89.
Ну и так далее. С каждым шагом все ближе будем подходить к 8, но никогда точно 8 не получим. Значит искомое число - иррациональное (это доказывается математическими методами).
https://vk.com/away.php?to=https%3A%2F%2Fyadi.sk%2Fd%2FbUmAGU7PVIo0Cw&cc_key=
Объясните пожалуйста как решается такое выражение:
10+1
10lg(----------);
10-1
Спасибо.