Формулы приведения. Как быстро получить любую формулу приведения

все формулы приведения на одной картинке

Формулы приведения разработаны для углов, представленных в одном из следующих видов: \(\frac{\pi}{2}+a\), \(\frac{\pi}{2}-a\), \(π+a\), \(π-a\), \(\frac{3\pi}{2}+a\), \(\frac{3\pi}{2}-a\), \(2π+a\) и \(2π-a\). Аналогично их можно использовать для углов представленных в градусах: \(90^°+a\), \(90^°-a\), \(180^°+a\), \(180^°-a\), \(270^°+a\), \(270^°-a\), \(180^°+a\), \(180^°-a\). К счастью, учить наизусть формулы привидения вам не придется, потому что есть легкий и надежный способ вывести нужную за пару секунд.




Как быстро получить любую формулу приведения

Для начала обратите внимание, что все формулы имеют похожий вид:

общий вид формул приведения

Здесь нужно пояснить термин «кофункция» - это та же самая функция с добавлением или убиранием приставки «ко-». То есть, для синуса кофункцией будет косинус, а для косинусасинус. С тангенсом и котангенсом – аналогично.

Функция:                Кофункция:
\(sin⁡\) \(a\)          \(→\)            \(cos⁡\) \(a\)
\(cos⁡\) \(a\)          \(→\)             \(sin⁡\) \(a\)
\(tg⁡\) \(a\)            \(→\)            \(ctg\) \(a\)
\(ctg⁡\) \(a\)          \(→\)             \(tg\) \(a\)

Таким образом, например, синус при применении этих формул никогда не поменяется на тангенс или котангенс, он либо останется синусом, либо превратиться в косинус. А котангенс никогда не станет синусом или косинусом, он либо останется котангенсом, либо станет тангенсом. И так далее. 

Едем дальше. Так как исходная функция и ее аргумент нам обычно даны, то весь вывод нужной формулы сводится к двум вопросам:
- как определить знак перед конечной функцией (плюс или минус)?
- как определить меняется ли функция на кофункцию или нет?




Как определить знак перед конечной функцией (плюс или минус)?

Какой знак был у исходной функции в исходной четверти, такой знак и нужно ставить перед конечной функцией.

Например, выводим формулу приведения для \(⁡cos⁡(\frac{3\pi}{2}-a) =....\) С исходной функцией понятно – косинус, а исходная четверть?

Для того, чтобы ответить на этот вопрос, представим, что \(a\) – угол от \(0\) до \(\frac{\pi}{2}\), т.е. лежит в пределах \(0°…90^°\) (хотя это может быть не так, но для определения знака данная условность необходима). В какой четверти тригонометрической окружности при таком условии будет находиться точка, обозначающая угол \(\frac{3\pi}{2}-a\)?
Чтобы ответить на вопрос, надо от точки, обозначающей \(\frac{3\pi}{2}\), повернуть в отрицательную сторону на угол \(a\).

как определяется знак у формул приведения

В какой четверти мы окажемся? В третьей. А какой же знак имеет косинус в третьей четверти? Минус. Поэтому перед итоговой функцией будет стоят минус: \(cos(\frac{3\pi}{2}-a)=-...\)




Менять ли функцию на кофункцию или оставить прежней?

Здесь правило еще проще:

- если «точка привязки» \(\frac{\pi}{2}\) (\(90^°\)) или \(\frac{3\pi}{2}\) (\(270^°\))– функция меняется на кофункцию;
- если «точка привязки» \(π\) (\(180^°\)) или \(2π\) (\(360^°\)) – функция остается той же.

То есть, при аргументах исходной функции \(\frac{\pi}{2}+a\), \(\frac{\pi}{2}-a\), \(\frac{3\pi}{2}+a\) или \(\frac{\pi}{2}-a\), мы должны поменять функцию, а при аргументах \(π+a\), \(π-a\), \(2π+a\) или \(2π-a\) - нет. Для того, чтоб это легче запомнить, вы можете воспользоваться мнемоническим правилом, которое в школе называют «лошадиным правилом»:

Точки, обозначающие \(\frac{\pi}{2}\) \((90^°)\) и \(\frac{3\pi}{2}\) \((270^°)\), расположены вертикально, и если вы переводите взгляд с одной на другую и назад, вы киваете головой, как бы говоря «да».

меняется ли функция в формулах приведения

Точки же, обозначающие \(π\) (\(180^°\)) и \(2π\) (\(360^°\)), расположены горизонтально, и если вы переводите взгляд между ними, вы мотаете головой, как бы говоря «нет».

меняется ли функция в формулах приведения 

Эти «да» и «нет» - и есть ответ на вопрос: «меняется ли функция?».
Таким образом, согласно правилу, в нашем примере выше \(cos⁡(\frac{3π}{2}-a)=...\) косинус будет меняться на синус. В конечном итоге получаем, \(cos⁡(\frac{3π}{2}-a)=-sin⁡\) \(a\). Это и есть верная формула приведения.




Примеры с формулами приведения:

Зачем нужны формулы привидения? Ну, например, они позволяют упрощать выражения или находить значения некоторых тригонометрических выражений без использования калькулятора.

Пример. (Задание из ЕГЭ) Найдите значение выражения \(\frac{18 \cos {⁡{41}^°} }{\sin⁡ {{49}^°}}\)

Решение:

\(\frac{18 \cos {{⁡41}^°} }{\sin⁡{{49}^°}}=\)

Углы \({41}^°\) и \({49}^°\) нестандартные, поэтому «в лоб» без калькулятора вычислить непросто. Однако использовав формулы привидения, мы легко найдем правильный ответ.
Прежде всего, обратите внимание на одну важный момент: \(49^°=90^°-41^°\). Поэтому мы можем заменить на \(49^°\) на \(90^°-41^°\).

\(=\frac{18 \cos {⁡41^° }}{\sin⁡ {({90}^°-{41}^°)}}=\)

 

Теперь применим к синусу формулу приведения:

  • \(90^°-41^°\) – это первая четверть, синус в ней положителен. Значит, знак будет плюс;

  • \(90^°\)- находится на «вертикали» - функция меняется на кофункцию.

\(\sin⁡{(90^°-41^°)}=\cos⁡ 41^° \)

\(=\frac{18 \cos {⁡41^° }}{\cos⁡ {{41}^°}}=\)

 

В числителе и знаменателе получились одинаковые косинусы. Сокращаем их.

\(= 18\)

 

Записываем ответ

Ответ:  \(18\)



Пример. Найдите значение выражения \(\frac{3 \sin{⁡(\pi-a)}-\cos(\frac{\pi}{2}+a) }{\cos⁡ {(\frac{3\pi}{2}-a)}}\)

Решение:

\(\frac{3 \sin{⁡(\pi-a)}-\cos(\frac{\pi}{2}+a) }{\cos⁡ {(\frac{3\pi}{2}-a)}}=\)

Рассмотрим первое слагаемое числителя: \(\sin⁡(π-a)\). Воспользуемся формулами приведения, выведя ее самостоятельно:
  • \((π-a)\) это вторая четверть, а синус во второй четверти положителен. Значит, знак будет плюс;
  • \(π\) это точка «горизонтальная», то есть мотаем головой, значит функция остается той же.

Таким образом, \(\sin⁡(π-a)=\sin⁡a\) 

\(=\frac{3 \sin{⁡a}-\cos(\frac{\pi}{2}+a) }{\cos⁡ {(\frac{3\pi}{2}-a)}}=\)

 

Второе слагаемое числителя: \(\cos⁡{(\frac{π}{2} + a)}\):
  • \((\frac{π}{2} + a)\) это опять вторая четверть, а косинус во второй четверти отрицателен. Значит, знак будет минус.
  • \(\frac{π}{2}\) это точка «вертикальная», то есть киваем, значит, функция меняется на кофункцию – синус.

Таким образом, \(\cos{⁡(\frac{π}{2} + a)}=-\sin⁡a\)

\(=\frac{3 \sin{⁡a}-(-\sin{a}) }{\cos⁡ {(\frac{3\pi}{2}-a)}}=\)

 

Теперь знаменатель: \(\cos⁡(\frac{3π}{2} - a)\). Его мы разобрали выше, он равен минус синусу. \(\cos⁡(\frac{3π}{2} - a)=-\sin{⁡a}\)

\(=\frac{3 \sin{⁡a}-(-\sin{a}) }{-\sin⁡ {a}}=\)

 

Раскрываем скобки и приводим подобные слагаемые.

\(=\frac{3 \sin{⁡a}+\sin{a}}{-\sin⁡ {a}}=\frac{4\sin{a}}{-\sin{a}}\)

 

Сократив на \(\sin⁡{a}\), получаем ответ.

\(=\frac{4 }{-1}=\)\(-4\)

 

Ответ:  \(-4\)



Пример. Вычислить чему равен \(ctg(-a-\frac{7π}{2})\), если \(tg\) \(⁡a=2\)

Решение:

\(ctg(-a-\frac{7π}{2}) =\)

Здесь сразу формулу приведения применять нельзя, так как аргумент нестандартный. Что не так? Прежде всего, \(a\) стоит первой, хотя должна быть после «точки привязки». Поменяем местами слагаемые аргумента, сохраняя знаки.

\(= ctg(-\frac{7π}{2}-a) =\)

 

Уже лучше, но все еще есть проблемы – «точка привязки» с минусом, а такого аргумента у нас нет. Избавимся от минуса, вынеся его за скобку внутри аргумента.


\(= ctg(-(\frac{7π}{2}+a)) =\)

 

Теперь вспомним о том, что котангенс – функция нечетная, то есть
\(ctg\) \((-t)=- ctg\) \(t\). Преобразовываем наше выражение.

\(= - ctg(\frac{7π}{2}+a) =\)

 

Несмотря на то, что точка привязки \(\frac{7π}{2}\) мы все равно можем использовать формулы приведения, потому что \(\frac{7π}{2}\) лежит на пересечении одной из осей и числовой окружности (смотри пояснение ниже). \((\frac{7π}{2}+a)\) это четвертая четверть, и котангенс там отрицателен. «Точка привязки» - вертикальная, то есть функцию меняем. Окончательно имеем \(ctg(\frac{7π}{2}+a)=-tg a\) .

\(= - (- tg\) \(a) = tg\) \(a = 2\)

 

Готов ответ.

Ответ:  \(2\)

Еще раз проговорим этот важный момент: с точки зрения формулы приведения \(\frac{7π}{2}\) - это тоже самое, что и \(\frac{3π}{2}\). Почему? Потому что \(\frac{7π}{2}=\frac{3π+4π}{2}=\frac{3π}{2}+\frac{4π}{2}=\frac{3π}{2}+2π\). Иными словами, они отличаются ровно на один оборот \(2π\). А на значения тригонометрических функций количество оборотов никак не влияет:

\(cos\) \(⁡t=cos ⁡(t+2π)=cos ⁡(t+4π)=cos ⁡(t+6π)= ...=cos⁡ (t-2π)=cos ⁡(t-4π)=cos⁡ (t-6π)…\)
\(sin\) \(t=sin⁡ (t+2π)=sin ⁡(t+4π)=sin ⁡(t+6π)= ...=sin⁡ (t-2π)=sin ⁡(t-4π)=sin ⁡(t-6π)…\)

Аналогично с тангенсом и котангенсом (только у них «оборот» равен \(π\)).
\(tg\) \(t=tg⁡(t+π)=tg⁡(t+2π)=tg⁡(t+3π)= ...=tg⁡(t-π)=tg⁡(t-2π)=tg⁡(t-3π)…\)
\(ctg\) \(t=ctg⁡(t+π)=ctg⁡(t+2π)=ctg⁡(t+3π)= ...=ctg⁡(t-π)=ctg⁡(t-2π)=ctg⁡(t-3π)…\)

Таким образом, \(-ctg(\frac{7π}{2}+a)=- ctg(\frac{3π}{2}+2π+a)=- ctg(\frac{3π}{2}+a)\).

То есть, для определения знака и необходимости смены функции важно лишь местоположение «точки привязки», а не её значение, поэтому так расписывать не обязательно (но можно если вы хотите впечатлить своими знаниями учительницу).



Ответы на часто задаваемые вопросы

Вопрос: Есть ли формулы приведения с аргументами \((\frac{π}{3}-a)\),\((\frac{π}{4}+a)\),\((\frac{7π}{6}+a)\) или тому подобное?
Ответ: К сожалению, нет. В таких ситуациях выгодно использовать формулы разности и суммы аргументов. Например, \(cos⁡(\frac{π}{3}-a)=cos⁡\frac{π}{3} cos⁡a+sin⁡\frac{π}{3} sin⁡a=\frac{1}{2}cos⁡a+\frac{\sqrt{3}}{2} sin⁡a\).



Смотрите также Как доказать тригонометрическое тождество?

Скачать статью


Хочу задать вопрос

*